Для каждого региона России имеется собственный ежедневный прогноз количества подтвержденных и активных случаев заболевания, числа выздоровлений и летальных исходов. В результате анализа данных о пандемии алгоритмами машинного обучения была получена статистическая картина течения и распространения заболевания. По каждому показателю алгоритм формирует два варианта развития событий: реалистичный и пессимистичный. Второй строится за счет увеличения параметра дисперсии распределения. Это делается на случай снижения уровня самоизоляции, вызванного наступлением майских праздников.
Для формирования прогноза система проводит анализ исторических данных, получаемых из открытых источников. Модель использует алгоритмы машинного обучения и предиктивного анализа, учитывающие диффузии зараженных граждан между регионами в условиях беспрепятственного перемещения, а также строгость карантинных мер в том или ином субъекте. В ситуации, когда ключевые эпидемиологические характеристики COVID-19 еще достоверно не известны, выбранный подход к прогнозированию посредством ИИ может привести к получению наиболее точных прикладных результатов.
В основе методологии прогноза лежит сочетание различных техник. Совмещение разнообразных подходов необходимо так как прогноз строится для отдельных регионов, которые сильно различаются по степени развития эпидемии, демографическим показателям, да и по степени достоверности данных. Используется широкий спектр техник – и оптимизация феноменологических моделей, и устойчивые, но достаточно грубые методы типа деревьев решений, и такие точные алгоритмы как сверточные сети. Процедура их комбинирования также является предметом оптимизации- гиперобучение или «обучение обучению».
Исходные данные, применяемы для формирования прогноза:
Исторические данные об уровне заболеваемости в округе, включая:
Описание анализируемого географического региона:
Опубликованная модель прогнозирует ситуацию при условии сохранения действующего уровня самоизоляции. По причине отсутствия возможности предсказания, не берутся в расчет последствия от будущих решений региональных властей о карантинных послаблениях.